Генетичний код як система

З 64 можливих триплетів 61 є смисловим кодоном, тобто кодує амінокислоти. Усі кодони триплетні, нерозривні і не перекриваються в тексті, а також не розділені межкодонними знаками (комами). Усі кодони однозначні, тобто кожен кодує єдину амінокислоту. Інакше кажучи, в напрямі кодон - амінокислота генетичний код однозначний.

Зворотна відповідність в напрямі амінокислота - кодон неоднозначно, і ця властивість називається вирожденістю. Окремі амінокислоти кодуються групами (серіями) кодонів-синонімів. 18 серій з 20 містять від двох до шести кодонів, дві серії (Met і Trp) не вироджено, містять по одному кодону. Середня виродженість генетичного коду приблизно три кодони на серію.

Виродженість називається систематичною, якщо кодони-синоніми розрізняються в третій позиції або пуринами (R = A або G), або пиримидинами (Y = U або C), або взагалі будь-якими з чотирьох нуклеотидів (N = A, G, U або C). Цим принципам задовольняють 30 пар кодонів з 32, а також вісім тетрад з 16. Усі ці пари зв'язні, а тетради полнозв'язні. Інші варіанти виродженості називають несистематичними. Вони відносяться до великих серій: Leu і Arg - зв'язні серії, Ser - незв'язна серія, Ile - три кодони, повнозв'язна серія.

Генетичний код містить також знаки пунктуації (початку і кінця) трансляції. Кодони AUG, GUG і UUG у прокариот окрім кодування амінокислот кодують також ініціацію трансляції. Проте однозначність кодування при цьому не порушується, оскільки знаки, що ініціюють, локалізовані в певному оточенні (контексті), здатному утворювати самокомплементарні ''шпильки''. У еукаріот ініціюють триплети AUG і слабіше, - UUG, AUA і ACG. Три ''вакантні'' триплети у E. coli - UAA (ochre), UAG (amber) і UGA (opal) - не кодують амінокислот, а виконують роль термінальних знаків трансляції (стоп-кодонів, нонсенс-кодонов або термінального нонсенсу). У нормі ними закінчуються усі цистрони, тобто трансльовані гени, одиниці трансляції. Мутаційне виникнення нонсенсу усередині гена призводить до передчасної термінації трансляції і обриву білку. Нонсенс теж утворює зв'язну серію.

Розшифровка генетичного коду була одним з найвидатніших наукових відкриттів ХХ століття.

Третій етап вивчення проблеми генетичного коду (після 1966 року) пов'язаний з поглибленим дослідженням молекулярних механізмів кодування, системних властивостей генетичного коду: симетрії, регулярності, завадостійкої, універсальності, а також шляхів його виникнення і еволюції [11]. Молекулярною системою, що забезпечує відповідність кодонів М-РНК і амінокислот, являється набір адапторних молекул транспортних РНК (Т-РНК) і набір кодуючих ферментів аміноацил-т-РНК-синтетаз (АРС-аз). Кожна специфічна молекула Т-РНК має антикодон, що взаємодіє з кодоном М-РНК, а також специфічний сайт взаємодії з певною АРС-азой і неспецифічний сайт зв'язування амінокислоти. Кожна АРС-аза пізнає усі ізоакцепторні (що переносять одну амінокислоту) фракції Т-РНК, одну певну амінокислоту і сполучає їх макроергічним (енергобагатою) зв'язком. Тому відповідність антикодону Т-РНК і амінокислоти визначається саме АРС-азой. Фракції Т-РНК виконують функції адапторів (специфічних посередників) між кодонами М-РНК і амінокислотами.

Багато властивостей генетичного коду забезпечуються властивостями молекул Т-РНК і АРС-аз. Триплетний і нерозривний антикодон виділений в антикодонной петлі Т-РНК спеціальними модифікованими нуклеотидами. Цим забезпечуються триплетность і нерозривність впізнанних кодонів матриці. Усі антикодони однаково триплетны, тому, починаючи від знаку, що ініціює, трансляція здійснюється триплетними кроками, тобто формується певна рамка (фаза) трансляції - одна з трьох можливих. В цьому випадку межкодоные знаки (коми) не потрібні, а кодони не перекриваються. Кодони, що ініціюють, у E. coli пізнаються спеціальною фракцією т-РНКF - Met, що переносить модифіковану амінокислоту форміл-метіонін. Термінальний нонсенс взагалі не має своїх фракцій Т-РНК, а пізнаються спеціальними білковими чинниками терминации.

Однозначність коду в напрямі кодон - амінокислота забезпечується строгою специфічністю АРС-аз. Кожна АРС-аза дізнається єдину амінокислоту, тому неоднозначність виключена або маловірогідна. У основі систематичної виродженості лежать правила неоднозначності спаровування кодон-антикодон, встановлені Ф. Криком [8, 11]. Один антикодон може дізнаватися один, два або три кодони, що розрізняються по третій позиції. Згідно з правилами неоднозначного спаровування, систематична виродженість в парах кодонів забезпечується окремими фракціями Т-РНК, U, що мають, G або I (інозин) в трьох позиціях антикодонів. Вырожденность 3 у ізолейцину (Ile) вимагає фракцію Т-РНК з I в третій позиції антикодону. Такий нуклеотид там дійсно є. Виродженість 4 вимагає не менше двох фракцій Т-РНК, виродженість 6 - не менше трьох фракцій. Всього генетичний код E. coli вимагає не менше 32 фракцій Т-РНК. Реально у E. coli повне число генів Т-РНК дорівнює 86 для 79 фракцій з різними антикодонами. Отже, багато фракцій Т-РНК частково дублюють один одного.

Перейти на сторінку: 1 2 3 4


Подібні статті

Хижі ссавці Чернігова
Тваринний світ — одна з основних складових частин природного середовища і природних багатств нашої країни. Ссавці, або звірі, становлять велику й різноманітну групу серед тваринного світу нашої країни. Вони живуть скрізь, де є для них ї ...

Динаміка та еколого-біологічні особливості дендрофлори пам’ятки місцевого значення саду імені Т.Г Шевченко м. Харкова
Однією з характерних особливостей сучасної епохи є невтримний темп урбанізації. Створюючи і розвиваючи міста, людство змінює вигляд навколишнього середовища. Місто, як штучна формація, різко відрізняється від своєї географічної зони. Змінюються мікро ...

Головне меню