Методи дослідження мітохондрій

Значних успіхів

було досягнуто у вивченні мітохондрій, при цьому значну роль зіграла електронна мікроскопія, яка дала можливість виявити їх специфічну ультраструктурну організацію, а також розробка методів біохімічного аналізу цих органоїдів після виділення.

Електронна мікроскопія. Взаємозв'язок довжини хвилі світла і межі дозволу зберігається для будь-якої форми випромінювання, як для світлових променів, так і для електронів. Однак в останньому випадку межа дозволу істотно нижче. Довжина хвилі електрона зменшується зі збільшенням його швидкості. В електронному мікроскопі з напругою 100000 В довжина хвилі електрона дорівнює 0.004 нм, а відповідно до теорії, дозвіл такого мікроскопа складає 0,002 нм.

Загальна схема просвічуючого електронного мікроскопа (ПЕМ). Джерело випромінювання - нитка катода, яка випускає електрони з вершини циліндричної колони висотою біля двох метрів. Оскільки при зіткненні з молекулами повітря електрони розсіюються, у колоні повинний бути створений вакуум. Електрони, які випромінюються катодною ниткою, прискорюються найближчим анодом і проникають через малюсінький отвір, формуючи електронний промінь, який проходить у нижню частину колони. Уздовж колони на деякій відстані розташовані кільцеві магніти, які фокусують електронний промінь, подібно скляним лінзам, які фокусують промінь світла у світловому мікроскопі. Зразок через повітряний шлюз поміщають у вакуум колони, на шляху електронного пучка. Частина електронів у момент проходження через зразок розсіюється відповідно до щільності речовини в даній ділянці, залишок електронів фокусується й утворить зображення на фотопластинці або на фосфоресцируючому екрані.

В електронному мікроскопі не можна спостерігати живі об'єкти. Тому тканини фіксують, зшиваючи клітини і клітинні структури глутаральдегідом, а потім обробляють осмієвою кислотою. Зразки збезводнюють, фіксують смолами і нарізають тонким скляним або алмазним ножем.

Тонкі зрізи практично є двовимірними зрізами тканини і не дозволяють судити про тривимірну структуру клітинних компонентів. Тривимірне зображення можна одержати після реконструкції сотень серійних зрізів. В даний час розроблені більш прямі методи одержання тривимірного зображення. Один з них складається у вивченні зразка під скануючим електронним мікроскопом. Для одержання зображення в просвітчастому електронному мікроскопі використовують електрони, які проходять через зразок, а в скануючому електронному мікроскопі використовуються електрони, які розсіюються або випромінюються поверхнею зразка. У даному випадку зразок повинен бути зафіксований, висушений і покритий тонкою плівкою важкого металу. Потім зразок сканується дуже вузьким пучком електронів. У такий спосіб відбувається формування єдиного, цільного і значно збільшеного зображення.

Метод скануючої електронної мікроскопії забезпечує значну глибину фокусування; більш того, оскільки масштаби розсіювання електронів визначаються кутом поверхні стосовно променя, на зображенні виникають світлі і темні ділянки, які чергуються та створюють враження тривимірності. Але цей метод застосовують тільки для вивчення поверхні і його дозвіл порівняно невеликий (близько 10 нм з ефективним збільшенням приблизно 20 тис. раз). Даний метод практично не застосовується для вивчення субклітинних органел і використовується винятково для вивчення цілих кліток і тканин.

Просвітлюючий електронний мікроскоп можна використовувати для вивчення поверхні зразка з дуже великим збільшенням, спостерігаючи окремі макромолекули. На висушений зразок напиляється тонка плівка важкого металу. Метал напиляється під певним кутом, так що відкладення напиленої плівки в деяких місцях товстіше, ніж в інших. Цей процес відомий як відтінення, при ньому виникає ефект тіні, який створює враження тривимірності зображення.

Приготовані в такий спосіб зразки можуть бути досить малі і тонкі, щоб електронний промінь проникав крізь них; наприклад, таким способом можна аналізувати індивідуальні молекули, віруси і стінки кліток. Що ж стосується більш товстих зразків, то тут після відтінення необхідно видалити органічний матеріал клітки, при цьому на поверхні зразка залишиться тільки тонкий металевий відбиток або репліка поверхні. Ця репліка потім підсилюється вуглецевою плівкою, після чого її можна помістити на сітку і вивчати в звичайному електронному мікроскопі.

У клітинній біології особливо успішно використовуються два методи, засновані на одержанні механічних реплік. Один з них - метод електронної мікроскопії «заморожування-сколювання» - дає можливість вивчати внутрішню будову клітинних мембран. Клітки заморожують при температурі рідкого азоту. Заморожений блок потім розколюють лезом ножа. Відкол часто проходить через гідрофобну середину подвійного шару ліпідів, оголюючи внутрішню поверхню клітинних мембран. Утворену поверхню відколу, яка утвориться відтіняють платиною, органічний матеріал видаляють і вивчають отримані репліки в електронному мікроскопі.

Перейти на сторінку: 1 2 3


Подібні статті

Характеристика антитіл та імуноглобулінів
Імуноглобуліни (антитіла) мають здатність специфічно з'єднуватись з антигеном і є найважливішими молекулами імунологічної системи. Тому докладне вивчення їх будови, властивостей і утворення є передумовою розуміння імунологічних механізмів. ...

Кишковопорожнинні
Кишковопорожнинні здавна відомі людині. Ще давньогрецький учений Аристотель писав про деяких представників цього типу. Він, як згодом і багато інших вчених, вважав їх чимось середнім між тваринами та рослинами (такі самі проблеми були з си ...

Головне меню